
SDSS and GriPhyN

The SDSS-GriPhyN Cluster Finding Challenge Problem

James Annis1, Steve Kent1 Yong Zhao, Jens Voeckler, Ian Foster, Mike Wilde

1Experimental Astrophysics Group, Fermilab

Draft v1 November 20, 2001

We examine the Sloan Digital Sky Survey cluster finding algorithms as examples of virtual data. We
describe one of these, the maxBcg algorithm that works on colors and luminosities. We then describe
the superstructure necessary to turn this into a Challenge problem.

1 Introduction... 2

1.1 Clusters of Galaxies .. 2
1.2 Cluster Finding Algorithms as Virtual Data Engines ... 3
1.3 Problem Analysis .. 4

2 The Cluster Catalog Generation.. 5
2.1 The MaxBCG Algorithm .. 5
2.2 Transformations .. 7

3 The Cluster Finding Challenge ... 8
3.1 Description.. 8
3.2 User Interface (Fermilab).. 9
3.3 The Derived Data Catalog (Fermilab) ... 9
3.4 Virtual Data Catalog (UC/Fermilab) ... 11

3.4.1 The VDC Transformation Catalog.. 11
3.4.2 Simple Pseudo-Code (Is this code close to this, in reality?)..................................... 12

3.5 Computation Manager (UW/Fermilab)... 13
3.5.1 Code Migration Subsystem... 14

4 Task List.. 17

 1

SDSS and GriPhyN

1 Introduction

The Sloan Digital Sky Survey1 aims to map a quarter of the sky in five bandpasses relatively deeply
into the galaxy population. A stated goal is object brightnesses and colors accurate to 2%. The
combination of wide imaging and precise photometry makes it a near perfect tool to find clusters of
galaxies.

1.1 Clusters of Galaxies

Clusters of galaxies are the largest bound structures in the universe; a good analogy is a hot gas
cloud, where the molecules are galaxies. By counting clusters at a variety of redshifts as a function
of mass, one is able to probe the evolution of structure in the universe. The number of the most
massive clusters is a sensitive measure of the mass density Ωm ; combined with the cosmic
microwave background measurements of the shape of the universe, these become a probe of the
dark energy.

The traditional way to find clusters of galaxies is to look for galaxy overdensities. This technique
has had a checkered history, but with the onset of the SDSS data it has proven to be very
competitive as the precision photometry allows background and foreground galaxy rejection. There
remain some fundamental limitations, the two most important of which that galaxies are a 1%
constituent by mass of clusters and that there are a finite, and rather small, number of galaxies per
cluster. The currently unique ability of the optical data to find clusters over a major fraction of the
sky more than makes up for these limitations.

1 For an overview, see

http://www.sdss.org
For details, see both
 http://www.astro.princeton.edu/PBOOK/welcome.htm and
 http://xxx.lanl.gov/abs/astro-ph/0006396
For access to data and playing around, see
 http://skyserver.fnal.gov/en/

 2

http://www.sdss.org/
http://www.astro.princeton.edu/PBOOK/welcome.htm
http://xxx.lanl.gov/abs/astro-ph/0006396
http://skyserver.fnal.gov/en/

SDSS and GriPhyN

1

T
t
w
p
b
s
u
i

V

Figure 1: A rich intermediate redshift cluster of galaxies in the SDSS data. You are to be looking at the red
extended galaxy at the upper right side of image center. If you have problems seeing the cluster, which is a
rich cluster, then you have noticed the problem of low contrast over the background that has plagued
cluster catalog making in the past. Color helps, to the point of bing revolutionary; the blue objects in lower
right side of center are certainly foreground galaxies.
.2 Cluster Finding Algorithms as Virtual Data Engines

galaxy catalog cluster finder cluster catalog

checkpoint files

he concept of virtual data breaks into two parts: transparency with respect to location and
ransparency with respect to existence. The latter, derived data generated on the fly, is the research
e wish to explore. Cluster catalogs are nearly perfect examples of derived data. Currently they are
roduced in production mode, where one creates a catalog against all existing data. The codes may
e rearranged to human driven mode, when the data are generated on demand. The latter has
ignificant benefits, as the parameters desired by the scientist may not have been those that were
sed in the production mode. Furthermore, the intermediate products of cluster finding are
nteresting derived data in their own right.

irtual Data Engine:
 -Galaxy catalog is input
 -Algorithm runs

-creating intermediate files
 -Cluster catalog is output.

3

SDSS and GriPhyN

Furthermore, there is no one correct way to select clusters of galaxies2. Nature has made a clean
break at the scale of galaxies: galaxies and entities smaller are cleanly identifiable as single entities;
above galaxies the entities are statistical. Given that, there are many different ways to identify
clusters of galaxies. The SDSS currently is exploring 6 different cluster catalogs.

Each of these catalogs are derived data sets. It is worth pointing out that

a. Each algorithms have changeable parameters,
b. Each algorithm evolves and hence has version numbers,
c. The underlying data can change as the reduction or calibration is re-performed.

We thus point out that versioning and the associated bookkeeping is important.

1.3 Problem Analysis

The basic procedure to find clusters is to count the number of galaxies within some range about a
given galaxy. This is an N2 process3. Note that the procedure is done for each galaxy in the catalog.
The problem is thus computationally expensive, but it is in fact balanced with I/O requirements;
with the appropriate choices of parameters it can be made either an I/O bound problem or a CPU
bound problem.
Table 1: Computational and Storage Requirements for the full SDSS

Area 7000 sq-degrees

Storage 1540 Gigabytes
Compute4 7000 CPU-hours (500 Mhz PIII, 1 Gig RAM)

Find clusters in center region

Include galaxies in extended region

Table 1 shows the scale of the problem. The problem can be made embarrassingly parallel by
setting an upper limit to the angular size of the clusters. This is in effect setting a lower limit to the
distance to the cluster. Then one works on a central region, with a buffer zone around that region of
angular size of the upper limit. One only
locates clusters in the central region, but
uses the information from the buffer zone
for the calculation. The buffer zone has, in
a purely distributed computing
environment, a cost as it is replicated data;
this is not a strong constraint. A natural
size for the central region is about 7 square degrees; this translates to 7 hours of compute time and
1.5 Gig that must be transferred. The latter is an upper limit; the first step in the cluster finding
algorithm extracts from the full data set the galaxies, and only those measurements on the galaxies
of interest and then produces new files containing this data. The new files mass about a factor of 40

2 Except, of course, that my algorithm is clearly superior.
3 Though with us the use of metadata stored on trees it can be brought down to a N log(N) problem
4 For the MaxBcg algorithm, the clearly superior one mentioned earlier.

 4

SDSS and GriPhyN

smaller than the full data set, and thus after the first stage, one is transferring about 35 Meg around
for the 7 sq-degree region.

Table 2: Computational and Storage Requirements for the Natural Unit

Area 7 sq-degrees

Storage 1.5 Gigabytes
Compute5 7 CPU-hours (500 Mhz PIII, 1 Gig RAM)

The work proceeds through many stages and through many intermediate files that can be used as a
form of checkpoint. This is an advantage.

To summarize, cluster finding is a good choice for the initial challenge problem as

1. cluster catalogs are a good example of derived data,
2. cluster catalog creation is roughly compute and storage balanced (~5 CPU-hours/Gig).

2 The Cluster Catalog Generation

The algorithm that we will use is called MaxBcg, from “MAXimum likelihood determination of the
Brightest Cluster Galaxy”. It has had considerable success on the SDSS dataset, for which it was
designed. It is an astrophysically based method, in that it incorporates much knowledge about the
object under study rather than performing a purely statistical search. Examples of the latter would
be looking for overdensities in a 7 dimensional space of position and fluxes., or by searching for
compact cells in a Voronoi tessellation of space broken up into a large number of color slices. One
of other benefits of the maxBcg algorithm is that it is fast compared with the other algorithms.

2.1 The MaxBCG Algorithm

At its most abstract, the algorithm moves a cylinder around in a 5 dimensional space, calculating
the likelihood at each point. Doing so on a grid in 5 dimensions would be prohibitively expensive,
not to mention silly. There is a natural, adaptive, non-linear grid that is optimal to use, and gets its
structure from the domain knowledge about the space. The 5-dimensional space is that of:

1. two spatial dimensions, Right Ascension (RA) and Declination (dec)6
2. two color dimensions, g-r and r-i7
3. one brightness dimension, i

The natural grid in the two spatial dimensions is that of the galaxies themselves; calculations are
performed at the location of a galaxy. The two color and one brightness dimension would still be

5 For the MaxBcg algorithm, the clearly superior one mentioned earlier.
6 RA and Dec make sense for observing the fixed stars from a spinning, revolving platform, but the details are
unnecessary here; think of them as something like azimuth and elevation.
7 g,r,i denote energy fluxes through bandpasses corresponding to green, red, and beyond red light. The flux is in log, so
the g-r notation implies a flux ratio. There is a –2.5 multiplicative factor present for historical reasons; unfortunately the
French Revolution did not exert its influence on astronomy.

 5

SDSS and GriPhyN

Figure 2: The MaxBcg cluster finding algorithm

prohibitively expensive, except that there is a one-dimensional path through those three dimensions
that the vast majority of cluster galaxies follow. That track is parameterized by the redshift, z, and
the track itself may be calibrated by a combination of galaxy formation/spectral synthesis models
and the data themselves. The blue dotted line in figure 2 shows the projections of this 1-d track
onto the two most useful projections, g-r vs. i and r-i vs. g-r. The red lines show the acceptence
window: on the images they show a radius of 0.5 Megaparsec (Mpc; this is half of the radius
usually used) and objects inside that radius show up in the plots; on the bottom plot the ellipse
shows the range of colors allowed about the projection point; and in the middle plot the horizontal
lines shows the acceptance window in color and brightness. The ellipse in that figure shows
something else: the mean and 2-σ dispersion about the mean of the properties of the brightest
galaxy in each cluster of galaxies, for a large sample of clusters.

The algorithm works like this: for each galaxy, loop over all redshifts. At a given redshift, calculate
the likelihood that the observed properties of this galaxy match the known properties of brightest
cluster galaxies as they would be seen at that redshift. Weight this likelihood by the log of the
number of galaxies that are inside the acceptance window, again at that redshift. Having made this
calculation over all redshifts, choose the redshift which maximizes the probability for this galaxy
and record the properties, probability, and redshift8. Having done this for all galaxies, once again
walk over all galaxies and for each galaxy ask: does this galaxy have the highest probability of all

 6

8 This photometric redshift turns out to be a very good estimate of the cluster redshift, good enough that a spectroscopic
redshift of the cluster is superfluous.

SDSS and GriPhyN

galaxies within 1 Mpc and 0.05 of its redshift, at its redshift? If so, there is a cluster present, and
this galaxy is the brightest cluster galaxy and by definition the center of the cluster. If not, move on.

Finally, there is the step of walking through each galaxy and extracting those that have been
denoted as the centers of clusters. This is the final cluster catalog creation step.

2.2 Transformations

We can describe the algorithm as a series of transformations, each of which takes input, makes a
computation, and creates new output files. The code of the algorithm is already organized in this
fashion, the challenge is to use the Virtual Data Language to describe both the transformations and
the files.The series of transformations is shown in table 2.

Table 3: The maxBcg transformations

fieldPrep:

Create field files from the galaxy catalog.

 Why: Reduce data volume, increase I/O speed by large factors
 Input: tsObj files
 Output: field files

brgSearch:

Calculate the unweighted BCG likelihood for each galaxy

 Why: The unweighted likelihood may be used to filter out
unlikely candidates

 Input: field files
 Output: brg files

bcgSearch:

Calculate the weighted BCG likelihood for each galaxy.

 Why: The heart of the algorithm, and expensive.
 Input: brg files
 Output: core files

bcgCoalesce:

Is this galaxy the most likely galaxy in the neighborhood?

 Why: Find peaks in the probability, for they are clusters
 Input: core files
 Output: cluster files

getCatalog:

Find peaks in the probability, for they are clusters

 Why: Remove extraneous data
 Input: cluster files
 Output: cluster catalog

 7

SDSS and GriPhyN

For the entire cluster finding code, there are two parameter files. One contains parameters that
control the code, the other a lookup table of the expected colors and magnitudes of various galaxies
at various redshifts (called the k-correction, for reasons lost in the mists of time).

3 The Cluster Finding Challenge

The Cluster finding challenge problem aims to exercise the use of derived data catalogs and
metadata, replica catalogs, transformation catalogs including DAG creation, and code migration.
The last of these is a logically distinct effort, but incorporates nicely here.

3.1 Description

Aim: Demonstrate a catalog-driven data derivation tool that, when given a request for data,
determines whether computation is required to generate it, and if so schedules it.

Plan: Make a simple demo: given a display of the sky with areas highlighted in three ways
(Clusters found, data exists, and no data) allow the user to make a plot of the clusters in the area.
This is done by:

1. Drawing a box on the sky image
2. Computing a bounding box
3. Creating sub-bounding boxes where cluster catalogs don’t exist
4. Finding those sub-bounding boxes where galaxy data does exist
5. Using the transformation catalog to compute the DAG necessary to calculate

the cluster catalog in those sub-bounding boxes
6. Managing the computation
7. Updating the cluster catalog
8. Sending the cluster catalog to the user interface

Components: There are four distinct components to this system:
1. The User Interface (Fermilab)
2. The Virtual Data Catalog (UC)
3. The Derived Data Catalog (Fermilab)
4. The Computation Manager (UW)

 8

SDSS and GriPhyN

3.2 User Interface (Fermilab)

The user interface presents a sky image to the user. Upon selection of a region, the user interface
computes the RA and Dec bounding box of the region and a SQL request is constructed. The SQL
request is treated as a URL, and the visualization tool is invoked aimed at that URL.

RA Dec bounding boxes
User Interfaces

Astrotools

Visualization

ggobi

RA Dec bounding boxes
User Interfaces

Astrotools

RA Dec bounding boxes
User Interfaces

Astrotools

RA Dec bounding boxes
User Interfaces

RA Dec bounding boxes
User Interfaces

Astrotools

Visualization

ggobi

Visualization

ggobi

VisualizationVisualization

ggobi

The technologies involved:
astrotools: The SDSS pipeline codes
are generically called astrotools9.
Astrotools has the coordinate transform
routines that are necessary for the user

interface.
ggobi: The AT&T multidimensional
visualization package xgobi has evolved into a Gnome front ended version, ggobi10. It also
has hook that allows one to access XML data directly from the web, as in
ggobi -x http://localhost:8000/sqldb/demo/query.xsql?query=select from cluster where ngals>=20 .
Here one is finding all clusters above a given richness, without an explicit bounding box.
The main thrust of ggobi is rapid exploration of many dimensional data.

It is worth noting that it is this request drives the machinery

3.3 The Derived Data Catalog (Fermilab)

The derived data catalog (DDC) holds the materialized data, here the cluster catalog. It accepts RA-
Dec SQL queries over the web and return XML encoded data. The DDC consists of a database and
a pair of web servers, the second being an interceptor layer that translates the XML into the XML
format needed down stream, in our case the ggobi format.

The technologies involved: Derived Data CatalogDerived Data CatalogDerived Data Catalog

Existing cluster catalogsExisting cluster catalogsExisting cluster catalogs

Spitfire MySQLpyBabel Spitfire MySQLpyBabel

pyBabel: The interceptor layer is a python web server
that takes in the SQL queries, retransmits them to the
Spitfire web server, catches the XML response from
Spitfire, translates it for ggobi, and sends it on. It sits on port 8000, as in ggobi -x
http://localhost:8000/ and redirects the query to port 8080, where Spitfire lives.
Spitfire: Spitfire11 is a grid enabled relational database. More exactly, it is a set of grid
enabled Java servlets running in the Apache Tomcat Java web server, and which acts as a
JDBC layer on many relational databases. It allows SQL queries, table updates, and
deletions to come in over the web, and the results to go back in XML format.
MySQL: The base database for the DDC is MySQL, as that is what spitfire comes
configured to run right out of the box.

At this point we have a functioning system, albeit one without the ability to generate virtual data.

9 http://www-sdss.fnal.gov:8000/sdss.pipe.html
10 http://www.ggobi.org
11 http://hep-proj-spitfire.web.cern.ch/hep-proj-spitfire/share/spitfire/doc/index.html

 9

http://localhost:8000/sqldb/demo/query.xsql?query=select
http://localhost:8000/
http://www-sdss.fnal.gov:8000/sdss.pipe.html
http://www.ggobi.org/
http://hep-proj-spitfire.web.cern.ch/hep-proj-spitfire/share/spitfire/doc/index.html

SDSS and GriPhyN

Existing cluster catalogs
Derived Data Catalog

Spitfire MySQLpyBabel

RA Dec bounding boxes
User Interfaces

Astrotools

Visualization

ggobi

Figure 3: The concrete data system.

Grid BeowulfsGrid Beowulfs

Existing cluster catalogs
Derived Data Catalog

Spitfire MySQLpyBabel

Metadata and transformation catalog
Virtual Data Catalog

VDL PostSQLpyBabel

RA Dec bounding boxes
User Interfaces

Astrotools

Visualization

ggobi

TAM

SDSS Data ServerSDSS Data Server

kdDM

SDSS Cluster FinderSDSS Cluster Finder

Computation Manager

Condor Code Migrate

Figure 4: The full virtual data system

 10

SDSS and GriPhyN

3.4 Virtual Data Catalog (UC/Fermilab)

The VDC is an interceptor layer of a more formidable level. The user interface and the derived data
catalog together construct a concrete data system, seen in figure 3. When the virtual data catalog is
placed as an interceptor in front of the derived data catalog, it increases the capability of the system
by allowing both the materialization of new cluster catalogs and keeping track of what was done to
produce them: both the computation and the bookkeeping.

Metadata and transformation catalog
Virtual Data Catalog

VDL PostSQLpyBabel

Metadata and transformation catalog
Virtual Data Catalog
Metadata and transformation catalog

Virtual Data Catalog

VDL PostSQLpyBabel

The VDC takes in the request for a URL page, splits out the SQL request, and from that the
bounding box. It then splits the bounding box up into bounding
boxes for which there exist cluster catalogs, and into bounding
boxes for which there exist galaxy data and hence the
capability to generate cluster catalogs. If the latter is an non-
empty set, the VDC calculates the DAG and sends it on to the Computation Manager. When the
computation manager finishes, there are new data to be placed into the derived data catalog, and
new metadata and bookkeeping data to be placed in the VDC. Finally, the URL request is honored.

tsObj

field

brg

core

cluster

catalog

core

cluster

catalogdensity

There is an interesting mechanism here: the VDC’s conception of the cluster catalog data in the
derived data catalog is that of a series of transformations (see table 3.) The top layer, the cluster
catalog, only knows that it was created from cluster
files, not that ultimately it came from tsObj files. The
VDC should recurse the transformations back to a
place where it either it knows where to find the files
or the files don’t exist. This allows one a) to rerun the
cluster finder with different parameters, skipping
some of the more time intensive steps (the blue
branch), and more interestingly b) to run other
analyses that depend on prior files (the yellow
branch). The latter is the beginning of a plug and play
approach to virtual data, in the sense that new algorithms need only know their input, not
necessarily the entire transformation tree.

The technologies involved:
 PyBabel: a web interface to the VDC.
 Virtual Data Catalog: the code without a name
 PostgreSQL: the database that the code without a name uses.

3.4.1 The VDC Transformation Catalog

The first transformation, fieldPrep, is the place to start.

 11

Transparency wrt materialization

Id Trans F ParamName …
i1 F X F.X …
i2 F Y F.Y …
i10 G Y P G(P).Y …

Trans Prog Cost …
F URL:f 10 …
G URL:g 20 …

Program storage

Trans. name

URLs for program location

Derived Data Catalog

Transformation Catalog

Update upon
materialization

App specific attr. id …
… i2,i10
…
…

Derived Metadata Catalog

id

Id Trans Param Name …
i1 F X F.X …
i2 F Y F.Y …
i10 G Y P G(P).Y …

Trans Prog Cost …
F URL:f 10 …
G URL:g 20 …

Program storage

Trans. name

URLs for program location

App-specific-attr id …
… i2,i10
…
…

id

Physical file storage

URLs for physical file location

Name LObjN …

F.X logO3 … …

LCN PFNs …
logC1 URL1
logC2 URL2 URL3
logC3 URL4
logC4 URL5 URL6

Metadata Catalog

Replica Catalog

Logical Container
Name

GCMS

Object Name

Transparency wrt location

Name LObjN … …
X logO1 … …
Y logO2 … …
F.X logO3 … …
G(1).Y logO4 … …

LCN PFNs …
logC1 URL1
logC2 URL2 URL3
logC3 URL4
logC4 URL5 URL6

Replica Catalog

GCMSGCMS

Object Name

SDSS and GriPhyN

 Rc parameters.par /daedaleos/parameters/parameter7.par
 Rc kcorr.par /daedaleos/evo/kcorr.par

 Begin astrotools
 Arg –f fieldPrep
 Stdout fieldPrep.log
 File i tsObj-
 File o field-
 End
 Rc fieldPrep /data/run10/fieldprep.tcl
 Rc fieldPrep.log /data/run10/fieldprep.log
 Rc field- /data/run10/fields/field-%s-%s-%s.par

Rc tsObj- /data/tsObj/%s/%s/tsObj-%s-%s-%s-%s.par

Ok, what I mean by the last two are files that look like:
 Field-752-3-123.par
 Field-752-4-433.par
and so on; at run time

3.4.2 Simple Pseudo-Code (Is this code close to this, in reality?)

For the VDC:

overlap(bounding-box, &list-of-existing-bounding-boxes, &list-of-nonexisting-bounding-boxes):
return the list of existing and new BBs needed to construct new BB

add_region(bounding-box, list-of-clusters): adds BB to the VDC, and also adds the clusters to the
cluster catalog

 12

SDSS and GriPhyN

delete_region(bounding-box): delete BB from the VDC, delete associated clusters from the cluster
catalog.

To simplify: Bounding boxes cannot overlap; can create, but can’t delete arbitrary bounding boxes.

build_task_list(entire-bounding-box, ntasks, &list-of-task-bounding-boxes)

build_task(bounding-box, program, parameter-file, &task-description)

get_files(bounding-box, &list-of-tsobj)

build_dag(entire-bounding-box, ntasks, program, parameter-file, &dag) {
 init_dag(dag);
 build_task_list(entire-bounding-box, ntasks, &list-of-task-bounding-boxes);
 for each bounding-box in list-of-task-bounding-boxes {
 build_task_dag(bounding-box, program, parameter-file, &task-description);
 add_to_dag(dag, task-description);
 }
}

build_task_dag(bounding-box, program, parameter-file, &task-description) {
 get_files(bounding-box, &list-of-tsobj);
 build_task_description(list-of-tsobj, program, parameter-file, &task-description);
}

build_task_list and get_files call Astrotools code.

The build_task_dag might want to be smart about scheduling data movements, etc.

Simplification: no wraparounds (?).

3.5 Computation Manager (UW/Fermilab)

The Computation Manager allows us to connect to significant grid resources. This is essentially
Condor-g, and hence the problem is just to incorporate it. There is a significant new capability to be
built, that of a more powerful code migration.

The technologies involved:

Condor-g: Condor12 manages computations on
distributed resources. Computation Manager

Condor Code Migrate

Computation ManagerComputation Manager

Condor Code MigrateCode Migrator: new code to handle the migration of
astrotools and related scripting language based science
codes.

 13

12 http://www.cs.wisc.edu/condor/

SDSS and GriPhyN

3.5.1 Code Migration Subsystem

The code migration problem is essentially that of using Astrotools in a Condor environment
without having a shared code serving file system.

The problem has two parts. The first is the dynamic libraries that TCL access. The second is the
way TCL sources scripts as part of startup. The solution is the Fermilab UPS environment13.

Astrotools is the SDSS software package. Is is a collection of C extensions to TCL, arranged in a
layered fashion over a set of circa 10 public domain software packages. Note that we are not using
TCL as a shell substitute; the packages are linked at compile time into a TCL interpreter, into a
executable named astrotools.

The Fermilab UPS package performs duties much like RedHat's rpm, except less conveniently. It
does, however, have one very large capability rpm lacks: Users can switch between two different
software packages that require the same underpinning, but with a different version, without
reinstalling software.

When one invokes ups, ("setup astrotools") one is asking it to query a flat file database (always on a
locally accessible disk, usually specific for the local machine) for what environmental variables
need to be set (e.g., ASTROTOOLS_DIR for the astrotools source and libraries), what path needs
to be added to PATH, and what dependent products exist. Dependent products are then set up using
ups in a recursive fashion. (Dependent products for astrotools include the SAOimage image display
program, and the PGPLOT plotting package.)

Now, TCL/Tk allow one to have startup TCL startup scripts, to be run as the executable starts.
These are handled in UPS via environmental variables such as ASTROTOOLS_STARTUP. All of
the TCL-based packages have such scripts, underpinning or not14.

Now, what prevents us from running Astrotools via Condor except on machines with the SDSS
environment installed, is the variety of scripts and libraries that are required at startup that the user

13 UPS/UPD is the software product version and distribution support infrastructure at Fermilab. It is a set of C and
Perl scripts. The database is a set of ASCII flat files pointed to by environment variables. The Fermilab ODS
department wants to do some work over the next year to bring more into alignment ups/upd and
rpm/autorpm/systracker - which is a layer on top of autormp using CVS as a repository. The other differences between
UPS/UPD and RPM that might be relevant are

a) ups does not require root access to install software
b) ups supports the concept of "flavor" and "qualifiers" that provide for the support of different OS and OS

environment versions and types. Also, support for node specific s/w startup and configuration.
c) ups supports startup, shutdown, tailor, configure etc.
d) as mentioned below ups supports specification of dependencies between s/w packages and upd allows

automatic distribution of dependent packages.
For more on UPS, see http://www.fnal.gov/docs/products/ups/. For installing UPS/UPD, see
http://www.fnal.gov/docs/products/bootstrap/ and in particular ftp://ftp.fnal.gov/products/bootstrap/v2_0/index.html)

14 Startup is the act of starting the TCL interpreter, and that is the same as starting any Unix program. Applications are
large scripts. These are usually run from inside TCL, though there is a facility to do it from the command line:

unix% astrotools -f my-large-script.tcl &

 14

http://www.fnal.gov/docs/products/ups/
http://www.fnal.gov/docs/products/bootstrap/
ftp://ftp.fnal.gov/products/bootstrap/v2_0/index.html

SDSS and GriPhyN

has no control over. The ones that I am sure of are the tcl startup scripts, and a library that TCL
wants. Excluding those, could one ship around the binary of astrotools to a random machine and
have it work? (For example, could gifs of plots be made in batch mode because pgplot is linked in
to the astrotools code?) The answer is yes.

But getting the TCL startup scripts and the TCL library out to the Condor pool is a real problem.
Solving it may make the exploring of the last paragraph unnecessary, as the easiest way to proceed
is to either a) use the UPS database, or b) use before and after environment snapshots to find out
what underpinnings are needed, taring them all up, and shipping the tarball around to the condor
pool.

Note that I am not talking about a user's science code trying to source a random file during program
execution. That too could be solved this way, but there are other ways of dealing with that. What I
need help solving is the problem of custom run time libraries and of TCL initialization scripts in a
Condor distributed computing environment.

LIGO has the same problem, by the way. They are handling it the same way that I am handling it
for my science: the Condor pool is restricted to only those machines that have the full environment
installed.

How can we get a list of what the application needs in order to run? The flat files of the UPS
database have all the necessary information for the startup scripts.

Table 4 shows the UPS database for astrotools. Note that it explicitly calls out the startup
script astrotoolsStartup.tcl. (fslalib and sdssmath are both dependent products. Somewhere below
sdssmath in the dependency tree lies Tk, and below that, TCL.) Table 5 shows the UPS database
file for TCL, and table 6 shows the setup.sh file for TCL. What is a “setup.sh” file? Part of the UPS
system that lives with the product. All of the codes we talk about are products, in the sense that
they have directory structures that look like:

[annis@espresso v7_4dfa]$ pwd
/p/tcl/v7_4dfa
[annis@espresso v7_4dfa]$ ls
bin BUILD_INFO include lib Makefile man src tcl tcl7.4 ups ups-old
[annis@espresso v7_4dfa]$

They are not spread out across system directories; they care compact. The ups directory above
contains “setup.sh” and “setup.csh” files that are run as part of doing the “setup tcl” command.

Table 4: UPS DB file for Astrotools

FILE = TABLE
PRODUCT = astrotools

Group:
Flavor=Linux+2.2

 15

SDSS and GriPhyN

Qualifiers=""

Common:
 Action=setup
 setupRequired("-f ${UPS_PROD_FLAVOR} fslalib v2_1_2a")
 setupRequired("-f ${UPS_PROD_FLAVOR} sdssmath v5_0")
 proddir()
 setupenv()
 envSet(ASTROTOOLS_STARTUP, ${UPS_PROD_DIR}/etc/astrotoolsStartup.tcl)
 pathAppend(PATH, ${UPS_PROD_DIR}/bin)
End:

Table 5: UPS DB file for TCL

File=Table
Product=tcl
#***
Starting Group definition
Group:

Flavor=Linux+2.2
Qualifiers=""

Common:
 Action=setup
 proddir()
 setupenv()
 sourceRequired(${UPS_UPS_DIR}/setup.${UPS_SHELL},UPS_ENV)
End:
End Group definition
#***

Table 6: setup.sh file for TCL

PATH="${TCL_DIR}/bin:$PATH"
TCL_LIBRARY=$TCL_DIR/lib/tcl7.4
export TCL_LIBRARY PATH

The way to approach the code migration is to:

1. Read the UPS db file for the science code

 16

SDSS and GriPhyN

2. Look for the directives “setupRequired”, “sourceRequired”, and “envSet”
3. If envSet:

a. Check to see if it the *_STARTUP environmental variable; if so, then the
product must be migrated

4. If sourceRequired:
a. Check to see if it is a setup.sh or setup.csh file; if so, read it
b. Look for environmental variables containing LIBRARY; if present, the product

must be migrated
5. If setupRequired, recurse.

At the end one will know which products must be migrated, and which environmental variables
must be set. I believe that those two conditions are the ones that are imply migration, and without
them the necessary parts of the product have been linked into the astrotools binary and migration is
unnecessary.

Success may be tested by editing a file named “cmd” and adding
echo [stripeLimits 10]
to it. The test is to run successfully over a Condor pool the command:
astrotools –f cmd

There is also the discussion of whether you send the tar with the job, or whether you "prep" the
Condor pool and leave the code in place for a week. The latter would require developing a
mechanism by which Condor makes sure that the job feels "at home" on the remote machine. We
can do it every time we run a job, we can do it once for a "cluster of jobs", we can do it "lazy" only
when we need it, or This is a very important problem that we need to solve.

4 Task List

• Yong:
o Get tsObj file from Jim
o Do a fieldPrep by hand
o Create a transformation catalog entry for fieldPrep
o Do a fieldPrep via VDL created DAG
o Move on to the other transformations

• Alain:
o Code migration, test astrotools –f cmd

• Jens:
o VDL extension as necessary

• Jim:
o Complete user interface
o Set up CVS repository for VDL
o Set up CVS repository for pyBabel and other codes

 17

	Introduction
	Clusters of Galaxies
	Cluster Finding Algorithms as Virtual Data Engines
	Problem Analysis

	The Cluster Catalog Generation
	The MaxBCG Algorithm
	Transformations

	The Cluster Finding Challenge
	Description
	User Interface (Fermilab)
	The Derived Data Catalog (Fermilab)
	Virtual Data Catalog (UC/Fermilab)
	The VDC Transformation Catalog
	Simple Pseudo-Code(Is this code close to this, in reality?)

	Computation Manager(UW/Fermilab)
	Code Migration Subsystem

	Task List

